Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.

نویسندگان

  • A R Bausch
  • F Ziemann
  • A A Boulbitch
  • K Jacobson
  • E Sackmann
چکیده

A magnetic bead microrheometer has been designed which allows the generation of forces up to 10(4) pN on 4.5 micron paramagnetic beads. It is applied to measure local viscoelastic properties of the surface of adhering fibroblasts. Creep response and relaxation curves evoked by tangential force pulses of 500-2500 pN (and approximately 1 s duration) on the magnetic beads fixed to the integrin receptors of the cell membrane are recorded by particle tracking. Linear three-phasic creep responses consisting of an elastic deflection, a stress relaxation, and a viscous flow are established. The viscoelastic response curves are analyzed in terms of a series arrangement of a dashpot and a Voigt body, which allows characterization of the viscoelastic behavior of the adhering cell surface in terms of three parameters: an effective elastic constant, a viscosity, and a relaxation time. The displacement field generated by the local tangential forces on the cell surface is visualized by observing the induced motion of assemblies of nonmagnetic colloidal probes fixed to the membrane. It is found that the displacement field decays rapidly with the distance from the magnetic bead. A cutoff radius of Rc approximately 7 micron of the screened elastic field is established. Partial penetration of the shear field into the cytoplasm is established by observing the induced deflection of intracellular compartments. The cell membrane was modeled as a thin elastic plate of shear modulus mu * coupled to a viscoelastic layer, which is fixed to a solid support on the opposite side; the former accounts for the membrane/actin cortex, and the latter for the contribution of the cytoskeleton to the deformation of the cell envelope. It is characterized by the coupling constant chi characterizing the elasticity of the cytoskeleton. The coupling constant chi and the surface shear modulus mu * are obtained from the measured displacements of the magnetic and nonmagnetic beads. By analyzing the experimental data in terms of this model a surface shear modulus of mu * approximately 2 . 10(-3) Pa m to 4 . 10(-3) Pa m is found. By assuming an approximate plate thickness of 0.1 micron one estimates an average bulk shear modulus of mu approximately (2 / 4) . 10(-4) Pa, which is in reasonable agreement with data obtained by atomic force microscopy. The viscosity of the dashpot is related to the apparent viscosity of the cytoplasm, which is obtained by assuming that the top membrane is coupled to the bottom (fixed) membrane by a viscous medium. By application of the theory of diffusion of membrane proteins in supported membranes we find a coefficient of friction of bc approximately 2 . 10(9) Pa s/m corresponding to a cytoplasmic viscosity of 2 . 10(3) Pa s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study.

By using magnetic bead microrheology we study the effect of inflammatory agents and toxins on the viscoelastic moduli of endothelial cell plasma membranes in real time. Viscoelastic response curves were acquired by applying short force pulses of ~500 pN to fibronectin-coated magnetic beads attached to the surface membrane of endothelial cells. Upon addition of thrombin, a rapid stiffening of th...

متن کامل

A prestressed cable network model of the adherent cell cytoskeleton.

A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry ...

متن کامل

Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer.

A magnetically driven bead micro-rheometer for local quantitative measurements of the viscoelastic moduli in soft macromolecular networks such as an entangled F-actin solution is described. The viscoelastic response of paramagnetic latex beads to external magnetic forces is analyzed by optical particle tracking and fast image processing. Several modes of operation are possible, including analys...

متن کامل

Thermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)

  The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...

متن کامل

Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: A finite element model based on a homogenization approach.

An original homogenization method was used to analyze the nonlinear elastic properties of epithelial cells probed by magnetic twisting cytometry. In this approach, the apparent rigidity of a cell with nonlinear mechanical properties is deduced from the mechanical response of the entire population of adherent cells. The proposed hyperelastic cell model successfully accounts for the variability i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 75 4  شماره 

صفحات  -

تاریخ انتشار 1998